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The optical-absorption coefficient of a polar semiconductor is calculated for light energies
comparable to the width of the gap in an effort to determine some effects of the electron-phonon
interaction. The self-energy given by the one-quantum cutoff approximation is used. The re-
sult is a shifting down of the absorption edge and some weak structure at an energy of one pho-

non above the edge.

I. INTRODUCTION

The polaron has been a popular model on which
to develop many-body techniques. As a result,
several approximations exist. Our object is to
use the polaron self-energy from one of them to
see if polaron effects can have a significant effect
on a measurable quantity, namely, the optical-ab-
sorption spectrum near the absorption edge.

We use a result discussed by Whitfield and Puff*
and by Velicky.? It is the self-energy calculated in
the one-quantum cutoff approximation, i.e., the
electron is dressed by no more than one phonon at

atime. Itis
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where ['is a band index; we consider two bands,
conduction and valence (I=c,v). w, is the frequency
of the longitudinal optical mode, m, is the effective
mass in band I, €=¢€,€/€,,~€, where €., €, are
the high-frequency and static dielectric constants,

§ is a Kronecker §, A is the band gap, and pu is

the chemical potential. The upper sign is for

I=c, the lower sign for I=v and p= | BI.

Implicit in this expression is the assumption that
the bands are isotropic and parabolic with direct
minimum gap at 2=0. We further assume that
m, <0 and —-m, >m,. .

The real part of T gives the shift in the quasi-
particle energy with respect to the noninteracting
energy; the imaginary part gives the inverse life-
time. The = we are using is entirely real (stable
-polaron) if Zw<Awy+A—p for I=c, and Zw > - w,
- uforl=v, and
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Consequently, there is an energy shift into the gap
for both bands of polaron states, and we can ex-
pect a lowering of the absorption edge.

When Zw >fiwy+ A - u for I=c, and Zw< - fiwy = K
for I=v, T is entirely imaginary, which means that
the polaron can decay into an electron and a phonon
(since the electron is dressed by only one phonon).
Thus, in this approximation, the polaron is un-
stable if it has an energy greater by one phonon than
the energy of the electron spectrum edge-not the
polaron spectrum edge.

II. FORMULA FOR OPTICAL ABSORPTION
We use an expression due to Bonch-Bruevich®*:

alw) = [26%] V(E) |2/ ceVenm?o] [ d*k dE

x {ImG, (%, v, E -7w)ImG, (&, c, E)

X [ng (E —liw) -nz(E)]}, 2

where G, is the retarded Green’s function

G = G,E>pu
TO\GME<p '’

V(%) is the interband-momentum matrix element,
which we have assumed varies slowly with & so that
it can be taken out of the integrand, ny is the Fermi
function, and we replace the above difference of
Fermi functions by 1 since we are working at T'=0,
This formula is an approximation to the Kubo
formula for conductivity. To reach the above
form from the Kubo formula, one factors the two-
particle Green’s function contained in the latter
into a product of one-particle Green’s functions.
This procedure is justified when the energy gap
A is much greater than a phonon energy 7w, by the
“asymptotic theorem.”%*
When we recall that ImG, is the quasiparticle
density of states, Eq. (2) is seen to have the same
form as the golden-rule expression for a. How-
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ever, we have the density of states of noninter- g%=Pwym, /22, m=mem,/m,—m, .
acting polarons, not electrons.
From (1) we get the Green’s function using As x -0, we find

Dyson’s equation

-1 -1 fiw=A- 2g2 +2 gz
G=Gi-2)1, @mewo/m) 2T % (= 2mwo /BT
nep? which is the polaron absorption edge.
Co= h[ﬁw “om,  SOneth In this neighborhood
oo (2R " 2m
+1.551gn(2m1 +A6,,c-u) x=| 3z w-A
2
G, is the free Green’s function, where £-0. 28,1 75+ g o 72\ v
The integrations are done in the Appendix; the T (-2m CL’o/ R) (2m “’o/ ' } ’
result is for 7w < A +7wy:
, a~(m/r%x .
a(w)- ATELVL (o) =P For <A+
P o or 7w <A + fiw,,
w=[@m/m) (o - &), a~(m/m)x .
1/2
+2 szﬁ sin-! [x / <_ o My “’o) ] - zgzc_aﬁ Thus, the polaron effects do not change the shape
X r x of the absorption edge, but shift its position down.
For example, for PbS the shift is of the order of
« sin-! [x/( 9 M, )"2} 2.6x10-% V.
n 0 For A+ (m,/m)fiwy> iw> A + iw,, a equals (3) plus
these terms:
2 -1/2 2 3,2 2— -1/2
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At rw=A+1,57%w,, this added structure amounts to
where x is the solution of about 0. 2% of the total absorption and is negative
e for PbS.
= nPx? TY 1 n sin-! [x / <_ 2 m,f"g) ] Since the first effect does not change the qualita-
om x K tive shape of the absorption and since the second
effect is so small, itisunderstandable why polaron
2 1/2 effects are not reported in standard absorption ex-
+2g—£sin ZM =0 , . P . < p.
x 7 periments, but only in more sensitive experiments
such as the magnetoabsorption experiment of
with Johnson and Larsen,®

APPENDIX: INTEGRATION OF (2)

In polar coordinates (2) is

2 2 27,2 hz E - H 7 1/2 k
a(w):ﬁ—z—izleJ;Iw/dk,dEkzIm[(E—}iw—ﬁk +u.—z§+z—1—l | L@my/72)( w+ Awg + p)]H 2+

)]

2m, B | [@my/T)(E - w+ hwy+ W) 72—k
n2R [@mo/R?)(E = Bwg— A+ W] /2 +k I)‘]
><Im|:<E—2mc —A+p.+z£+z—-9—l [(2mc/h'2)(E ﬁwz A+ )%k

In the range of E there are values for which the In factors in the first and second components of the inte-
grand are real, so those components become 6 functions:
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The first integral is zero unless

ﬁzkz g_?& 1 k
fiw - ﬁw0> A+ ch - k tan ([(_zmc/h,z)(E_ ;Z(DO—A+ “)]1/2>

The second integral is zero unless

et g, . k
A + iwy > 7w + om, 2 = tan <[(2m,,/h2)(—E 0~ T “)]1/2). >hw-Twy,
A gin k
A A- -1 -
HI0y> g TAT 2T tan ([(ch/na)(m T = = u)]“z) > T = iy -

The third integral is zero unless

¢ g, k
0> fiw + 2m, -2 A tan ([(_ va/hz)(ﬁw—E—h’wo—u)]l/z)>A+hw°'

These restrictions determine the limits of the % integration. For simplicity we neglect the tan™! factors in
these inequalities. Since these factors are slowly varying with % and are multiplied by the coupling con-
stant, neglecting them causes a very small error in the determination of the % limits. In addition, the E
in the tan! terms in the 5-function arguments is replaced by the value of E at which the rest of the argu-
ment goes to zero. This is the first step in a self-consistent procedure for finding the zeros of the argu-
ments, Then we have

T (@mg /12) (hwehuwg=a)1H/2 2,2 2
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The first and third integrals are zero unless 7w > fiwy+ 4, as their upper limits indicate.
To do the second integral we use

o s =(& >,f‘x ) )

where x, is the zero of f(x). To find x, we neglect the tan! terms as we did when finding the % limits of in-
tegration. The result is Eq. (3).
To do the first and third integral we approximate

(ig?n/k) In] |
(7w - 722 [2m — A - (2g2h/k) tan"*( Y +[(g2h/k)Inl |
by
(ig?n/k) Inl |

(7w — 72K /2m — A’

which, considering the smallness of the tan™! and In terms, is good except where 7w — %1%£%/2m - A=0. But
this point is outside the range of integration for 7w < A + (m,/m)#w,. The integral can now be done exactly;
the result is Eq. (4).
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